Exhibit 99.11 Header of all slides [Logo] Microsemi Slide 1 Managing Power - RFIC Products Erich Volk - Product Development / Marketing RFICs Dr. Michael Kim - RF Design and System Engineering Slide 2 Disclaimer . Some of the information in this presentation may contain projections or other forward-looking statements regarding future events or the future financial performance of Microsemi Corporation. . We wish to caution you that these statements are only predictions and that actual events or results may differ materially. We refer you to the documents the company files from time to time with the Securities and Exchange Commission, specifically, the Company's most recent Form 8-K, 10-K and Form 10-Q. . These documents contain and identify important factors that could cause the actual results to differ materially from those contained in our projections or forward -looking statements. . Amounts shown are estimates of projected revenue growth from new products. These estimates represent the average of the range of company estimates developed from external market research data, as well as internal company market and product forecasts. Amounts could change due to changes in market conditions, customer acceptance and other factors, whether known or unknown to the company at this time. Please refer to Microsemi Safe Harbor Statement. Slide 3 Market Strategy and Players Power Amp - $ M 2001 2002 2003 2004 2005 - -------------------------------------- ----------- ------------ ----------- ---------------- ----------------- TAM $654 $ 959 $1,178 $1,431 $1,492 WCDMA $ 9 $ 29 $ 64 $ 102 CDMA2000 1x 1 $ 12 $ 68 $ 191 $ 327 5GHz WLAN $ 3 $ 7 $ 13 $ 21 SAM $ 1 $ 24 $ 104 $ 268 $ 450 Source: Aug 2001 Cahners Instat Group RFIC PA Microsemi Alpha Anadigics RFMD Conexant - -------------------------------------- ------------ ------------ -------------- ------------ ------------ WCDMA InGaP/HBT InGaP/HBT AIGaAs/HBT AIGaAs/HBT CDMA/CDMA2000 InGaP/HBT AIGaAs/HBT InGaP/HBT AIGaAs/HBT AIGaAs/HBT WLAN 5GHz low power InGaP/HBT WLAN 5GHz high power InGaP/HBT GSM AIGaAs/HBT InGaP/HBT AIGaAs/HBT AIGaAs/HBT TDMA AIGaAs/HBT AIGaAs/HBT RFIC PA Agilent/HP Maxim Triquint Celeritek Raytheon - ------------------------------------ -------------- ---------- ------------ ---------------- ---------- WCDMA InGaP/HBT x CDMA/CCDMA2000 x SiGe InGaP/HBT InGaP/HBT x WLAN 5GHz low power x x WLAN 5GHz high power GSM x TDMA SiGe InGaP/HBT InGaP/HBT Slide 4 Microsemi Wireless RF/Fiber-Optic Engineered Solutions: Networked Corporate Resources & Advanced Technologies Semicon & Device Technology Leverage InGaP/GaAs - - HBT PAs - - HBT TIAs InGaAs/GaAs - - E-Mode PHEMT LNAs Silicon - - CMOS DC-DC Converter InGaAs/InP - - PA, LNA, TIA Product Design/Development [picture of Building] [picture of design engineers] [picture of engineer with test equipment] [picture of equipment] [picture of equipment] Power-Managed Multi-Function Integration Flip-Chip Packaging - - Au-Stud - - LTCC Variable Vc Bias PAs - - DC-DC - - Si CMOS RFIC/Opto Products [graphic of 2.5G-3G Power Amp, Chips & Modules] [graphic of 5-6GHz WLAN PA, LNA, Antenna, Antenna Switch] [graphic of 10-40Gb/s Ethernet/Sonet, Photodiode/TIA, Chips & Modules] Wireless/Fiber-Optic Applications [graphic of 2.5G-3G Portable] [graphic of 5-6GHz LAN] [graphic of Gb Ether/Sonet] Slide 5 Microsemi Wireless RF/Fiber-Optic Engineered Solutions: Optimum Power Amp RFIC Component Technology Path - - Lower Noise Figure - - Higher Gain/Bandwidth -- LNA, PA, PHEMT (E-Mode), HBT, - - No Drain Switch - - Smaller Die Size -- SiGe/Si[crossed out], AIGaAs/GaAs, InGaP/GaAs - - Better Temp Stability - - Greater Reliability -- Chip-&-Wire, PA Module, Flip-chip, PA Module - - Greater RF Performance - - Smaller Size - - Better RF Yield/Cost -- Solder-Reflow Bump, Thermosonic Au-Stud Bump - - Better Thermals - - Smaller Size - - Simpler Manufacturing -- PA Chips & Modules 2G-3G Portable 5-6GHz W-LAN Slide 6 W-CDMA/CDMA2000 HBT Power Amp Products: Worldwide 3G Mobile Communication Service 3G Mobile Communications W-CDMA/CDMA2000 HBT Power Amp Products Sept 2001 2002-03 2003-04 [picture of 3 mobile telephones] Korea/Europe USA [picture of PDA] (DCMA2000-1x, W-CDMA) (CDMA2000-1xEV) [picture of FOMA Card] NTTDoCoMo FOMA (Freedom Of Mobile Access) - - - - Introductory Phones [graphic of PA Chips, Modules (6x6mm2=>3x3mm2) Slide 7 Overall Power Amplifier Efficiency: Power-Added Efficiency (PAE) Vs Quiescent Current (Icq) Probability Distribution of CDMA Handset (IS-95) P 3 x r x x o x b 2.5 x a x b i x l 2 i t x x y 1.5 x x x % 1 x x x x 0.5 x x x x x x x x 0 ---------------------------------------------------- -25 1.5 -5 5 15 25 . High Transmitter Power: Edge of cell, deep fading . Low Transmitter Power: Near base station, low shadow & Rayleigh fading Pout (dBm) T 0.45 ox o 0.4 ox t 0.35 ox a 0.3 ox l 0.25 ox 0.2 ox C 0.15 xo u 0.1 xo r x x x x x x x x x x x x x x x x x x x x x x x x x r 0.05 o e o n o o o o o o o o o o o o o o o o o o t 0 (A) -------------------------------------------------------------------------- -25 -20 -15 -10 -5 0 5 10 15 20 25 30 Pout (dBm) x = High Icq (80mA) o = Low Icq (38mA) (MWS) [graphic of energy compliance logo] *30% Battery Power Saving! Fact #1: PA with highest PAE may not be the overall most efficient PA. Fact #2 Icq has a major impact on battery life of CDMA phones. * more than Slide 8 Advanced Performance-Managed Multi-Function PA Modules: Optimizing for Combined Efficiency, Linearity, Size and Cost Optimum "Intelligent" Performance-Managed Multi-Function, Multi-Chip Power Amp Module [schematic] 2-Bit Bias Control, Input Voltage (Battery), Buck DC-DC Converter, Variable Vcc (&/or Vref) Biasing, Vcc, HBT Power Amp, RF Input, RF Output "Intelligent" Power Amp Module [graphic of InGaP/GaAs] [graphic of HBT PA RFICs] [graphic of (2G-3G) Intelligent Power Mangement - - Discrete Variable Bias Region? - - Dynamic Input Envelope Tracking? - - PA Output Stage Switching? [schematic] Bias Control, Input Voltage (Battery), Boost DC-DC Converter, RF Input, Dynamic Envelope Tracking, Variable Bias, Vcc, Vref [schematic] PA Output Stage Switching, Switch Control Bias/Control Support Circuitry Multi-Layer Input Matching Circuitry Transient Voltage Suppression Multi-Layer Output Matching Circuitry [graphic of InGaP/GaAs] [graphic of HBT PA RFICs] [graphic of (2G-3G)] Multi-Layer Low-Temp Co-Fired Ceramic (LTCC) for Chip Module Packaging Flip-Chip Au-Stud/Au-Pad Die Attached and I/O Interconnect [graphic of magnified au stud bump] Slide 9 Active Bias Power Management of InGaP HBT Power Amp: DC-DC Converter with 2-Bit (4) Bias Level (In Development) [schematic] Input Voltage (Battery), Bias control (2-Bit+), Si Buck DC-DC Converter (greater than 1MHz), External FET Switch, Inductor & Filter Capacitor, Variable Vcc, Vref, HBT Power Amp, RF Input, RF Output Active Bias Power Amp Block Diagram 50 o 45 PAE (%) x 40 35 o 30 Vcc 1- 2V X 25 20 o 15 o 10 Vcc 0.5-1V x 5 o x o o 0 o o o ------------------------------------------------------------------- -10 -5 0 5 10 15 20 25 30 x = Converter o = No Converter InGap HBT W-CDMA Power Amp 4 Level Bias PAE Performance Slide 10 Dynamic Power Management of InGaP HBT Power Amp: Variable 2-Bit Vcc Bias with Si DC-DC Buck Converter W-CDMA/CDMA2000 PA with Buch Converter 4-Level Vcc Control [schematic] RF/IF Converter and Baseband Chip Set, Bias Control (2-Bit+), DC-DC Buck Converter (greater than 1MHz) 2-Bit+ Controlled Vcc, Vref Bias States: Bias 1 = V Battery, Bias 2 1-2V, Bias 3 0.5-1V, Bias 4 = 0ff, LDO, Battery Voltage (3.2-4.2V), Variable Vcc, Variable Vref, HBT Power Amp, RF Input, RF Output Slide 11 Flip-Chip Interconnect Via Gold Stud Bump/Gold Pad Bonding: Thermosonic Au Stud/Au Pad Process With Wire Bond Studs - - Gold-stud bumping and thermal vias on ceramic substrate (alumina, LTCC) - - GaAs IC die with Au pads flip-chip aligned to Au-stud bumps - - GaAs IC pads and substrate studs thermo-sonic welded [schematic] GaAs Flip-Chip Die (7mils Thick) with Au Pads, Au-Stud Bump, Ceramic Substrate (15mils Thick), Thermal Via (Silver-Filled), Printed Circuit Board (FR4) Schematic of Flip-Chip Assembly (75 um Diameter x 20 um Thick Studs) [picture of GaAs IC Flip-Chip Die, Ceramic Substrate and Magnified Au Stud Bump (75um D) Magnified Au-Stud Flip-chip Assembly (75um diameter x 20um Thick Studs) Slide 12 Au-Stud Flip-Chip PA Module Assembly: Performance, Size & Cost Advantages Over Conventional Chip-&-Wire Approach [schematic of Heat Flow] PA Module, PA RFIC + Backside Via, GaAs Substrate, Epoxy Die Attach, Module Substrate (LTCC), + Silver- Filled Thermal Vias, Solder Reflow, RF System PCB Performance, Size, Cost Chip-and-Wire Au Stud-Au Pad Flip-Chip - --------------------------- -------------------------- -------------------------------------- Module Performance - RF performance/yield limited - Optimum performance/yield - - RF (Gain, PAE, ACPR) -- Die attach epoxy RF ground -- Thermosonic Au-Au -- Wire bond inductance -- Repeatable low inductance -- Limited RF isolation (vias) -- Flexible RF isolation - - Thermal - Acceptable (4mil GaAs/Via) - 1-2X better (20um thick Au stud) - - Mechanical - Fragile (4mil thick) - 2x thicker die Size - - Chip Size - Ground via limited - Same size or smaller - - Module Size - Wire bond pad limited - 25%-30% smaller (no bond pad) Cost - - Chip Fab Process - Backside thinning+via+plating - 10% lower cost (no via/plating) - - Module Fab Process - Epoxy die attach+12 bonds - Same cost (flip-chip+30studs) - - Overall Module Cost - Chip & RF yield limited - >10% lower (chip+better RF yield) Slide 13 InGaP/GaAs HBT PA RFIC Thermal Analysis: Conventional Chip-&-Wire Versus Au-Stud Flip-Chip [graphic of circuit layout] 2-D Thermal Distribution Simulation - - 3-D software (finite-element analysis) Tochnog (public domain ANSI-C code) - - Thermal structure -- Thermal conductivity ratio Au:GaAs= 6:1 -- Heat flow thickness: -- GaAs substrate =100um; Au stud=20um -- Heat flow area wire-bond:flip-chip ratio=20:1 - - Heat flow into infinite heat sink Temperature (C) Distribution without Studs 1400 90 85 1200 xxxxxxx 80 xxxxxxx 75 1000 xxxxxxxx xxxxxxxxx 800 xxxxxxxxx 70 xxxxxxxxxx 65 600 xxxxxxxxxx 60 xxxxxxxxxxx 400 xxxxxxxxxxxx 55 xxxxxxxxxx 50 200 xxxxxxxxxx 45 0 xxxxxxx 40 - ------------------------------------------ - -1500 -1000 -500 0 Chip-&-Wire [graph of thermal distribution without Studs] Temperature (C) Distribution with Au Studs 1400 90 85 1200 xxxxxxx 80 xxxxxxx 75 1000 xxxxxxx xxxxxxx 800 70 xxxxxxx 65 600 xxxxxxx 60 xxxxxxx 400 55 xxxxxxx 50 200 xxxxxxx 45 0 xxxxxxx 40 - ------------------------------------------ - -1500 -1000 -500 0 Au-Stud Flip-Chip [graph of thermal distribution with Au Studs] Slide 14 InGaP/GaAs HBT PA RFIC Au-Stud Flip-Chip Thermal Analysis: 3-D Thermal Distribution Simulation 3-D Thermal Distribution Simulation - - 3-D software (finite-element analysis) Tochnog (public domain ANSI-C code) - - Thermal structure -- Thermal conductivity ratio Au:GaAs = 6:1 -- Heat flow thickness: GaAs substrate =100um; Au stud =20um -- Heat flow area wire-bond: Flip-chip ratio = 20:1 - - Heat flow into infinite heat sink Surface Temperature - Au-Stud Side [graphic of 3-D thermal map] [X Y Z axes] [graphic of circuit layout] [chart of color coded temperature] Slide 15 W-CDMA InGaP HBT PA Matched Module Evolution: 6x6mm2 Chip-&-Wire to 3x3mm2 Au-Stud Flip-Chip [graphic of 6x6mm2 Chip-&-Wire Single-Layer Alumina (PA Module Prototype)] [graphic of 3x3mm2 Au-Stud Flip-Chip Multi-Layer LTCC (PA Module in Development)] Slide 16 Amplifiier and Antenna Products: 5-6GHz Wireless Portable, Access Point, Bridge Applications 2002 2002-03 [picture of Current 2.4GHz Wireless LAN Modem 5-6GHz Wireless Modem Europe (HiperLAN) PCMCIA Card Format] - Portable Japan - Base Access - Bridge USA (802.11a) [graphic of Power Amp, LNA Printed Antenna] 5-6 GHz Wireless HBT Power Amp, PHEMT LNA and Antenna Products Slide 17 5-6GHz Wireless LAN Block Diagram: Microsemi RF Front-End Product Family Solution [schematic] Antenna Diversity Switch, Antenna 1, Antenna 2, Band Pass Filter, TX/RX Switch, LNA, PA, RF/IF Conversion Chip(s), Low Pass Filter, Baseband Chip Set [picture of band pass filter] [picture of Antenna Diversity Switch & TX/RX Switch] [picture of LNA] [picture of PA] Slide 18 InGaP HBT 5.15-5.35 GHz Hybrid 3-Stage PA Evolution: 3-Chip Discrete to 2-Chip RFIC Solution [schematic] Input 50 Ohm, Drive Amp Gain Block, Chip, SOT-23 or 1x2mm2 MLP, P1dB=12dBm G=11dB, Inter-Stage Match, 2nd-Stage, 1-Stage PA, Chip, SOT89 or 2x2mm2 MLP, P1dB greater than 24dBm G greater than 12dB, Inter-Stage Match, Output Stage, 1-Stage PA, Chip, SOT89 or 2x3mm2 MLP, P1dB~29-30dBm, G~5-6dB, Output Match, PCB: Rogers 4350, Output, P1dB greater than 29dBm, G greater than 28dB 2nd + 3rd Stage RFIC Integration - - Vcc=3.3V - - Total Quiescent Current: Icq 200mA - - P1dB 29-30dBm - - Gain*15dB [graphic of circuit board]